Skip to main content

AIPS DPP Alignment with BPS DPP Core

Purpose

This document defines how the AI Product DPP Profile (AIPS DPP) extends and semantically aligns with the Base Product Specification (BPS) DPP Core.
The goal is to ensure that any AIPS DPP instance remains a valid BPS DPP instance, while introducing additional AI-specific properties needed to describe machine learning and model-based products.


1. Design Relationship

The AIPS DPP Profile is an extension, not a replacement, of the BPS DPP Core.

LayerDescription
BPS DPP CoreProvides universal structure and vocabulary for all product passports — identity, issuance, integrity, and verification primitives.
AIPS DPP ProfileAdds AI-specific constructs such as model cards, evaluation results, training data lineage, and risk attributes.

All AIPS DPP artifacts (context, schema, SHACL) import or reference the corresponding BPS DPP Core artifacts.


2. Context Inclusion Model

Every AIPS DPP JSON-LD instance must include both contexts:

"@context": [
"https://kivanura.org/spec/bps/dpp/0.1/bps-dpp-core-0.1.context.jsonld",
"https://kivanura.org/spec/aips/dpp/0.1/aips-dpp-0.1.context.jsonld"
]

The BPS context establishes foundational predicates such as:

  • dpp:subject, dpp:issuer, dpp:issuedAt, dpp:status
  • Inline and ByRef pattern (schemaInline, schemaByRef, etc.)
  • Common datatypes (xsd:string, xsd:dateTime, etc.)

The AIPS context introduces domain-specific extensions:

  • aips:modelCardInline, aips:evalInline, aips:riskInline
  • aips:trainingDataByRef, aips:evalByRef, etc.
  • Additional quality, bias, and fairness properties aligned to AI lifecycle.

3. Semantic Mapping Table

The table below illustrates the semantic correspondence between BPS DPP Core and AIPS DPP terms.

BPS DPP Core TermAIPS DPP TermRelationshipDescription
dpp:Passportaips:Passportrdfs:subClassOfAIPS Passport is a subclass of DPP Passport.
dpp:schemaInlineaips:modelCardInlinerdfs:subPropertyOfModel card acts as the schema summary for AI systems.
dpp:lineageInlineaips:trainingDataInlinerdfs:subPropertyOfTraining dataset provenance aligns with general lineage semantics.
dpp:lineageByRefaips:trainingDataByRefrdfs:subPropertyOfReferences to data manifests or external datasets.
dpp:qualityInlineaips:evalInlinerdfs:subPropertyOfEvaluation metrics extend general quality indicators.
dpp:policyInlineaips:policyInlineowl:equivalentPropertyGovernance and compliance reporting maintain identical structure.
dpp:kgByRefaips:kgByRefowl:equivalentPropertyExternal graph reference mechanism remains identical.
dpp:provenanceInlineaips:trainingPipelineInlinerdfs:subPropertyOfDescribes execution lineage for training pipelines.
dpp:statusaips:statusowl:equivalentPropertyLifecycle state inherits directly from BPS Core.

This ensures that AIPS-specific predicates can be reasoned about under the same semantic model as BPS Core without breaking inheritance.


4. Structural Alignment

DimensionBPS CoreAIPS Extension
Product scopeGeneric — any product (physical, digital, or hybrid).Specialized — AI or ML-based digital products.
Integrity modelHash + signature.Same (inherits BPS).
Verification API/api/v1/dpp/{id}Same endpoint, extended with ?profile=aips.
Inline/ByRef patternPresent for all logical sections.Preserved — used for model card, eval, training data, and risk sections.
SHACL constraintsCore structural validation.Extends with additional shapes for AI fields.

AIPS does not redefine identity or trust layers; it extends the payload domain only.


5. Example: Context and Inference

When an RDF/Linked Data consumer loads an AIPS DPP document, inference rules apply naturally due to subclass and subproperty relationships:

aips:Passport rdfs:subClassOf dpp:Passport .
aips:modelCardInline rdfs:subPropertyOf dpp:schemaInline .
aips:evalInline rdfs:subPropertyOf dpp:qualityInline .

As a result:

  • All aips:modelCardInline statements are also valid dpp:schemaInline statements.
  • Any SPARQL query for dpp:qualityInline will match both generic and AI-specific metrics.

This enables federated querying and reasoning across mixed DPP domains (e.g., BPS + AIPS + future verticals).


6. Validation Stack Integration

LayerValidation FilePurpose
BPS DPP Corebps-dpp-core-0.1.schema.jsonBase structural constraints.
AIPS DPPaips-dpp-0.1.schema.jsonAdds AI-specific fields; includes $ref to BPS schema.
BPS SHACLbps-dpp-core-0.1.shacl.ttlDefines universal integrity and issuance rules.
AIPS SHACLaips-dpp-0.1.shacl.ttlExtends validation for modelCard, eval, risk, and training data.

Both validation layers can be executed independently or in cascade:

rdf-validate-shacl --shapes bps-dpp-core-0.1.shacl.ttl aips-example.ttl
rdf-validate-shacl --shapes aips-dpp-0.1.shacl.ttl aips-example.ttl

7. Backward Compatibility

  • Any AIPS DPP that passes AIPS validation will automatically pass BPS Core validation for the common fields.
  • Removing the AIPS-specific sections yields a syntactically valid BPS DPP Core instance.
  • No breaking changes are introduced to the BPS namespace.

8. Versioning and Namespace Coherence

ElementBPS NamespaceAIPS Namespace
Namespace Roothttps://kivanura.org/spec/bps/dpp/0.1/https://kivanura.org/spec/aips/dpp/0.1/
Ontology Filebps-dpp-core-0.1.ttlaips-dpp-0.1.ttl
Context Filebps-dpp-core-0.1.context.jsonldaips-dpp-0.1.context.jsonld

AIPS DPP maintains strict version coupling with the underlying BPS version. For example, AIPS DPP 0.1 is bound to BPS DPP Core 0.1. Future releases (e.g., AIPS DPP 0.2) may track BPS 0.2.


9. Summary

  • AIPS DPP extends BPS DPP Core through clean, RDF-aligned inheritance.
  • All AIPS predicates are subproperties or equivalents of BPS Core predicates.
  • This ensures semantic interoperability, validation consistency, and reasoning compatibility across all product domains.
  • Future domain profiles (e.g., Industrial, HealthTech) can reuse the same BPS foundation following this alignment model.