AIPS DPP Examples
Purpose
This section provides illustrative examples of Digital Product Passports (DPPs) created under the AIPS DPP Profile, which extends the BPS DPP Core.
Each example demonstrates how Lite and Full variants of an AI Product Passport can be represented in JSON-LD.
All examples conform to:
bps-dpp-core-0.1.context.jsonldaips-dpp-0.1.context.jsonld- The associated SHACL and Schema validation rules.
1. Example: FraudDetector AI Model (Lite Passport)
This Lite DPP provides a flattened, read-only snapshot of a model’s key metadata and evaluation metrics.
It is typically retrieved through a marketplace QR code or lightweight API call:
{
"@context": [
"https://kivanura.org/spec/bps/dpp/0.1/bps-dpp-core-0.1.context.jsonld",
"https://kivanura.org/spec/aips/dpp/0.1/aips-dpp-0.1.context.jsonld"
],
"type": "dpp:Passport",
"profiles": ["https://kivanura.org/spec/aips/dpp/0.1/"],
"subject": "urn:org:ml:product:fraud-detector:v2.1.0",
"issuer": "did:org:aiplatform",
"issuedAt": "2025-10-10T10:00:00Z",
"status": "Valid",
"contentHash": "sha256-REPLACE",
"signature": "REPLACE",
"modelCardInline": {
"modelName": "FraudDetector",
"modelType": "GradientBoostedTrees",
"framework": "XGBoost",
"modelVersion": "2.1.0",
"task": "binary-classification",
"license": "Proprietary-Internal",
"intendedUse": "Card-not-present transaction fraud screening"
},
"evalInline": {
"metrics": [
{ "metricName": "AUC", "metricValue": 0.943 },
{ "metricName": "Precision@Recall=0.9", "metricValue": 0.876 }
]
},
"riskInline": {
"knownRisks": [
"Potential bias toward low-transaction-volume merchants",
"Performance degradation on unbalanced datasets"
],
"mitigations": [
"Periodic fairness testing every quarter",
"Synthetic balancing for minority samples"
]
},
"policyInline": [
{
"policyName": "ModelGovernance-Approval",
"result": "Pass",
"evaluatedAt": "2025-10-01T10:00:00Z"
}
]
}
Key Features of Lite DPP
| Aspect | Description |
|---|---|
| Single compact JSON-LD file | No ByRef URIs — all Inline. |
| Verifiable | Includes signature and content hash. |
| Marketplace ready | Fits the QR-based DPP API contract. |
| Human-readable | Focused on interpretability, not machine detail. |
2. Example: FraudDetector AI Model (Full Passport)
The Full DPP combines Inline sections with ByRef references to larger artifacts — enabling verification, audit, and extended inspection. It follows the same schema and validation rules as the Lite version but includes external links and additional details.
{
"@context": [
"https://kivanura.org/spec/bps/dpp/0.1/bps-dpp-core-0.1.context.jsonld",
"https://kivanura.org/spec/aips/dpp/0.1/aips-dpp-0.1.context.jsonld"
],
"type": "dpp:Passport",
"profiles": ["https://kivanura.org/spec/aips/dpp/0.1/"],
"subject": "urn:org:ml:product:fraud-detector:v2.1.0",
"issuer": "did:org:aiplatform",
"issuedAt": "2025-10-10T10:00:00Z",
"status": "Valid",
"contentHash": "sha256-XYZ",
"signature": "REPLACE",
"modelCardInline": {
"modelName": "FraudDetector",
"framework": "XGBoost",
"modelType": "GradientBoostedTrees",
"intendedUse": "Card-not-present fraud detection",
"license": "Proprietary-Internal",
"knownLimitations": "Designed for transaction streams up to 10k/s"
},
"modelCardByRef": {
"uri": "https://cdn.kivanura.org/aips/fraud-detector/2.1.0/model-card.json",
"hash": "sha256-AAA",
"mediaType": "application/json",
"size": 18243
},
"evalInline": {
"metrics": [
{ "metricName": "AUC", "metricValue": 0.943 },
{ "metricName": "Recall@0.1FPR", "metricValue": 0.905 },
{ "metricName": "F1", "metricValue": 0.896 }
]
},
"evalByRef": {
"uri": "https://cdn.kivanura.org/aips/fraud-detector/2.1.0/evaluation-report.json",
"hash": "sha256-BBB",
"mediaType": "application/json",
"size": 52412
},
"trainingDataByRef": {
"uri": "https://cdn.kivanura.org/aips/fraud-detector/2.1.0/training-data-manifest.ttl",
"hash": "sha256-CCC",
"mediaType": "text/turtle",
"size": 28294,
"capturedAt": "2025-09-01T12:00:00Z"
},
"riskByRef": {
"uri": "https://cdn.kivanura.org/aips/fraud-detector/2.1.0/risk-register.json",
"hash": "sha256-DDD",
"mediaType": "application/json",
"size": 9400
},
"policyInline": [
{
"policyName": "DataResidency-EU",
"result": "Pass",
"evaluatedAt": "2025-09-30T12:00:00Z",
"evidenceHash": "sha256-EEE"
},
{
"policyName": "ModelGovernance-Approval",
"result": "Pass",
"evaluatedAt": "2025-10-01T10:00:00Z",
"evidenceHash": "sha256-FFF"
}
],
"kgByRef": {
"uri": "https://cdn.kivanura.org/aips/fraud-detector/2.1.0/kg-snapshot.ttl",
"hash": "sha256-GGG",
"mediaType": "text/turtle",
"size": 43100
}
}
Key Features of Full DPP
| Aspect | Description |
|---|---|
| Includes ByRef URIs | Each artifact can be independently verified. |
| Supports cryptographic linking | All external resources are hashed. |
| Includes full lineage and provenance | Enables audit and traceability. |
| Integrity preserved | Entire payload is signed and versioned. |
3. Example: VisionClassifier AI Model (Compact Overview)
This compact example shows how an image-classification model might expose its passport:
{
"@context": [
"https://kivanura.org/spec/bps/dpp/0.1/bps-dpp-core-0.1.context.jsonld",
"https://kivanura.org/spec/aips/dpp/0.1/aips-dpp-0.1.context.jsonld"
],
"type": "dpp:Passport",
"subject": "urn:org:ml:product:vision-classifier:v3.0.2",
"issuer": "did:org:aiplatform",
"issuedAt": "2025-10-08T10:00:00Z",
"status": "Valid",
"contentHash": "sha256-XYZ",
"signature": "REPLACE",
"modelCardInline": {
"modelName": "VisionClassifier",
"framework": "PyTorch",
"task": "image-classification",
"intendedUse": "Industrial quality inspection",
"license": "Apache-2.0"
},
"evalInline": {
"metrics": [
{ "metricName": "Top-1 Accuracy", "metricValue": 0.982 },
{ "metricName": "Inference Latency (ms)", "metricValue": 7.3 }
]
}
}
This Lite version can be displayed directly in a consumer interface without API chaining.
4. Validation Checklist
To ensure each AIPS DPP instance passes validation:
| Check | Validation Source |
|---|---|
| Structural conformance | aips-dpp-0.1.schema.json |
| Semantic consistency | aips-dpp-0.1.shacl.ttl |
| Integrity and authenticity | Signature + content hash (verified per BPS DPP Core) |
| Profile declaration | Must include "profiles": ["https://kivanura.org/spec/aips/dpp/0.1/"] |
| Required Inline/ByRef fields | At least one of each major section present |
5. Summary
- Lite DPPs are optimized for quick inspection and discovery.
- Full DPPs are verifiable and audit-ready, containing ByRef artifacts.
- Both variants conform to the same core schema and API contract.
- The AIPS DPP Profile ensures that every AI Product — from language models to fraud detectors — can be transparently described, validated, and trusted.