Skip to main content

AIPS DPP Examples

Purpose

This section provides illustrative examples of Digital Product Passports (DPPs) created under the AIPS DPP Profile, which extends the BPS DPP Core.
Each example demonstrates how Lite and Full variants of an AI Product Passport can be represented in JSON-LD.

All examples conform to:

  • bps-dpp-core-0.1.context.jsonld
  • aips-dpp-0.1.context.jsonld
  • The associated SHACL and Schema validation rules.

1. Example: FraudDetector AI Model (Lite Passport)

This Lite DPP provides a flattened, read-only snapshot of a model’s key metadata and evaluation metrics.
It is typically retrieved through a marketplace QR code or lightweight API call:

{
"@context": [
"https://kivanura.org/spec/bps/dpp/0.1/bps-dpp-core-0.1.context.jsonld",
"https://kivanura.org/spec/aips/dpp/0.1/aips-dpp-0.1.context.jsonld"
],
"type": "dpp:Passport",
"profiles": ["https://kivanura.org/spec/aips/dpp/0.1/"],

"subject": "urn:org:ml:product:fraud-detector:v2.1.0",
"issuer": "did:org:aiplatform",
"issuedAt": "2025-10-10T10:00:00Z",
"status": "Valid",
"contentHash": "sha256-REPLACE",
"signature": "REPLACE",

"modelCardInline": {
"modelName": "FraudDetector",
"modelType": "GradientBoostedTrees",
"framework": "XGBoost",
"modelVersion": "2.1.0",
"task": "binary-classification",
"license": "Proprietary-Internal",
"intendedUse": "Card-not-present transaction fraud screening"
},

"evalInline": {
"metrics": [
{ "metricName": "AUC", "metricValue": 0.943 },
{ "metricName": "Precision@Recall=0.9", "metricValue": 0.876 }
]
},

"riskInline": {
"knownRisks": [
"Potential bias toward low-transaction-volume merchants",
"Performance degradation on unbalanced datasets"
],
"mitigations": [
"Periodic fairness testing every quarter",
"Synthetic balancing for minority samples"
]
},

"policyInline": [
{
"policyName": "ModelGovernance-Approval",
"result": "Pass",
"evaluatedAt": "2025-10-01T10:00:00Z"
}
]
}

Key Features of Lite DPP

AspectDescription
Single compact JSON-LD fileNo ByRef URIs — all Inline.
VerifiableIncludes signature and content hash.
Marketplace readyFits the QR-based DPP API contract.
Human-readableFocused on interpretability, not machine detail.

2. Example: FraudDetector AI Model (Full Passport)

The Full DPP combines Inline sections with ByRef references to larger artifacts — enabling verification, audit, and extended inspection. It follows the same schema and validation rules as the Lite version but includes external links and additional details.

{
"@context": [
"https://kivanura.org/spec/bps/dpp/0.1/bps-dpp-core-0.1.context.jsonld",
"https://kivanura.org/spec/aips/dpp/0.1/aips-dpp-0.1.context.jsonld"
],
"type": "dpp:Passport",
"profiles": ["https://kivanura.org/spec/aips/dpp/0.1/"],

"subject": "urn:org:ml:product:fraud-detector:v2.1.0",
"issuer": "did:org:aiplatform",
"issuedAt": "2025-10-10T10:00:00Z",
"status": "Valid",
"contentHash": "sha256-XYZ",
"signature": "REPLACE",

"modelCardInline": {
"modelName": "FraudDetector",
"framework": "XGBoost",
"modelType": "GradientBoostedTrees",
"intendedUse": "Card-not-present fraud detection",
"license": "Proprietary-Internal",
"knownLimitations": "Designed for transaction streams up to 10k/s"
},
"modelCardByRef": {
"uri": "https://cdn.kivanura.org/aips/fraud-detector/2.1.0/model-card.json",
"hash": "sha256-AAA",
"mediaType": "application/json",
"size": 18243
},

"evalInline": {
"metrics": [
{ "metricName": "AUC", "metricValue": 0.943 },
{ "metricName": "Recall@0.1FPR", "metricValue": 0.905 },
{ "metricName": "F1", "metricValue": 0.896 }
]
},
"evalByRef": {
"uri": "https://cdn.kivanura.org/aips/fraud-detector/2.1.0/evaluation-report.json",
"hash": "sha256-BBB",
"mediaType": "application/json",
"size": 52412
},

"trainingDataByRef": {
"uri": "https://cdn.kivanura.org/aips/fraud-detector/2.1.0/training-data-manifest.ttl",
"hash": "sha256-CCC",
"mediaType": "text/turtle",
"size": 28294,
"capturedAt": "2025-09-01T12:00:00Z"
},

"riskByRef": {
"uri": "https://cdn.kivanura.org/aips/fraud-detector/2.1.0/risk-register.json",
"hash": "sha256-DDD",
"mediaType": "application/json",
"size": 9400
},

"policyInline": [
{
"policyName": "DataResidency-EU",
"result": "Pass",
"evaluatedAt": "2025-09-30T12:00:00Z",
"evidenceHash": "sha256-EEE"
},
{
"policyName": "ModelGovernance-Approval",
"result": "Pass",
"evaluatedAt": "2025-10-01T10:00:00Z",
"evidenceHash": "sha256-FFF"
}
],

"kgByRef": {
"uri": "https://cdn.kivanura.org/aips/fraud-detector/2.1.0/kg-snapshot.ttl",
"hash": "sha256-GGG",
"mediaType": "text/turtle",
"size": 43100
}
}

Key Features of Full DPP

AspectDescription
Includes ByRef URIsEach artifact can be independently verified.
Supports cryptographic linkingAll external resources are hashed.
Includes full lineage and provenanceEnables audit and traceability.
Integrity preservedEntire payload is signed and versioned.

3. Example: VisionClassifier AI Model (Compact Overview)

This compact example shows how an image-classification model might expose its passport:

{
"@context": [
"https://kivanura.org/spec/bps/dpp/0.1/bps-dpp-core-0.1.context.jsonld",
"https://kivanura.org/spec/aips/dpp/0.1/aips-dpp-0.1.context.jsonld"
],
"type": "dpp:Passport",
"subject": "urn:org:ml:product:vision-classifier:v3.0.2",
"issuer": "did:org:aiplatform",
"issuedAt": "2025-10-08T10:00:00Z",
"status": "Valid",
"contentHash": "sha256-XYZ",
"signature": "REPLACE",

"modelCardInline": {
"modelName": "VisionClassifier",
"framework": "PyTorch",
"task": "image-classification",
"intendedUse": "Industrial quality inspection",
"license": "Apache-2.0"
},
"evalInline": {
"metrics": [
{ "metricName": "Top-1 Accuracy", "metricValue": 0.982 },
{ "metricName": "Inference Latency (ms)", "metricValue": 7.3 }
]
}
}

This Lite version can be displayed directly in a consumer interface without API chaining.


4. Validation Checklist

To ensure each AIPS DPP instance passes validation:

CheckValidation Source
Structural conformanceaips-dpp-0.1.schema.json
Semantic consistencyaips-dpp-0.1.shacl.ttl
Integrity and authenticitySignature + content hash (verified per BPS DPP Core)
Profile declarationMust include "profiles": ["https://kivanura.org/spec/aips/dpp/0.1/"]
Required Inline/ByRef fieldsAt least one of each major section present

5. Summary

  • Lite DPPs are optimized for quick inspection and discovery.
  • Full DPPs are verifiable and audit-ready, containing ByRef artifacts.
  • Both variants conform to the same core schema and API contract.
  • The AIPS DPP Profile ensures that every AI Product — from language models to fraud detectors — can be transparently described, validated, and trusted.